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ON IGNORABLE COORDINATES OF CONSERVATIVE AND NATURAL SYSTEMS 
WITH THREE DEGREES OF FREEDOM* 

A.S. SUMBATOV 

A constructive solution of the existence problemforimplicitignorable coordinates** 
in holonomic systems with 3 degrees of freedom is presented. The solution reduces 
to the construction of functionally independent Lagrangian invariantsofthe system 
in explicit form. Because of the well-known interdependence between the existence 
of ignorable coordinates in a system and the existence of Killing vector fields, as 
well as linear (in velocity) first integrals of the Lagrangian equation, a solution 
of the remaining problems is thereby obtained in a local formulation for systems 
with 3 degrees of freedom. 

1. By definition /l/, the Lagrangian of a natural system has the form 

L = I/* a,#$' + a*$' + a Q' = dqldt) (1.1) 

the coefficients ai,, a,, and a are functions of the local coordinates Q', .,., q* and of time 1, 
while I\aljI) is a positive definite matrix. In formula (1.1) and in subsequent formulas, we 
will understand the presence of identical indices encountered in the monomials first as super- 
scripts, and then as subscripts, as a sum over all values of the index from 1 to n, with n 
the number of degrees of freedom of the system. A natural system is said to be invertible/2/ 
if the vector b = (ai,..., a,,) is zero, and is not invertible otherwise. The configurationmani- 
fold X, of a system is assumed to be C'-smooth, and the functions Uij, ci, and a, with i, j = 

1,. . ., n I do not contain t explicitly and belong to the class C’ over X, (the number r will 
be assumed to be sufficiently great, so that the existence and continuity of all the deriva- 
tives of the functions used in further discussions will not be expressly stated). 

Suppose Uis some coordinate neighborhood of an arbitrary point pi X,. We consider the 
following problem: given the Lagrangian coefficients (l.l), it is necessary to determine 
whether the function '%' (@, . . . . qn) and the nondegenerative transformation of coordinates 

qj = qj (Q',. . . , Q”) 0’ = 1, . . ., n) (1.2) 

exists in U, such that the Lagrangian 

L+ -&='/zAijQ"Qj'+ z&Q'+_4 (1.3) 

has ignorable coordinates (for the case of invertible systems \y (V) = 0). 
In the case n = 2 the solution of the problem is given by theorem 1. 
We introduce the notation 

Vz = (X2, dS* = Ujj&Clqj), 6’ = U11Q2 - (a&ay 3‘ = 8laqi 

rot b = (alaz - aza1)/6, Ad = &aifajf, AJ = a,(sdja,f)Rb 
II a” II = II aij II- 

The last formulas constitute the definitions of the differential parameters Aj and A-J 
of the function f (q’,. . ., q”), which are valid for arbitrary n. 

Let Q (q’, q2) E C* is some function defined in Uand without any critical point. Then 
p C X, is said to be a critical point of the function f: X,+R, if df (P) = 0. 

*Prikl.Matem.Mekhan.,45,No.5,787-799,1981 

** Editor's Note: The ignorable coordinates are also known as the cyclic coordinates. 
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The systems with three degrees of freedom 589 

Theorem 1. 1) If 

a,F&@ -&@&F = 0 (F = a, rot b, A#, A@) (1.4) 

then local coordinates may be defined on set U, one of whichis an ignorable coordinate for a 
given conservative natural system with 2 degrees of freedom. 

2) An ignorable coordinate also exists whenever the functions a, rot b, and K (K 
is the Gaussian curvature of the Riemannian manifold) are constant in U; the two coordinates 
of the system may be simultaneously ignorable if and only if K(U) = (rot b)(U) = 0 and a(U) = 
const. 

Obviously, if an ignorable coordinate exists for any of the functions a, rot b, or K, 
taken as the a,, the conditions (1.4) will be satisfied. The sufficiency of the latter con- 
ditions is proved by introducing the new coordinates Q' and Qz,and by selectingthe function 
'P by the formulas 

Q' = @ (q't n'), Q” = P @k-%@ - a,,&@) dq’ + p (w%@ - a&W) dqa 

P=$exp[-_-j$d0), Y=-S&dQ1f(B,-AAa)dQ~ 

ai dq’ = Bi dQ’, A, = A rot b dQ1, Aa = AHAB -(Al@ 

In the expression 

the coordinate Q* is ignorable. If K (U) = const, there exists /3,4/ coordinates Ql and Q', 
such that d.? = (dQ1)a f AZ2 (Q’) (dQ’)‘, hence follows the second assertion of the theorem. 

The theorem includes as special cases the classical attribute /3,4/ of a rotation metric, 
existence criterion /5-7/ for an ignorable coordinate in invertible systems, and an analogous 
criterion /8/ for noninvertible systems. Below we will find a solution of the problem forthe 
case n = 3. 

Definition. The tensor field y,b...~ (ql,. . ., qn) defined on the Riemannian manifold V,, = 
(X,, &a = a*,dq’dq’) is said to be an invariant of the Lagrangian (1.1) if: 

1) the components y~~a...r are functions only of the components all of the metric tensor, 
the skew-symmetric quantities 01~ = i3,a, -&al (1 < l <k <r&n), the scalar function a and the 
partial derivative to some order of these arguments with respect to $7 . * -7 q”: 

ao:k ‘Olk aa ace 
Olkr 7, . . . y aq axq,. . azqn ;a,,,..., aq aup'. . auq" 

(m,s, and e are fixed nonnegative integers; p,,.., h,x, . . . . z,v,..., u run through all possible 
nonnegative integers, such that p+...+h=m,x+...+z=s, v-+-...+u=e,and the re- 
maining indices run through the values 1, 2, . . . . n); 

2) if (1.2) and (1.3) are expressed in terms of arbitrary local coordinates, the new 
components 

Y ae...~=fa~...r 
aAij amAi j 

4, a~‘) . . ., aPQ1,f. ahQn ; 

as 
%k,+,..., 

‘%k A+..., 
a’A 

aQ a=Q' dZQ” ’ a”Q’. . a”Qn 

aA 
Qo=L-- aA l<l<k<<n, A=a) 

aq’ aQk ) 

where At* are the new components of the metric tensor. 

Remark lo. For the purposes of the present paper, it is not necessary for the second 
condition to hold for all possible transformations of coordinates. The transformation (1.2) 
may be limited by the condition sgndet~ aiQJll= i. Therefore it is assumed that the quantities 
I aa,,,r will be components of the pseudo-tensor, i.e., coefficients of theexternaldifferential 
form. Henceforth, this distinction will not be expressly stated. 
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2O. Whenever the invariant has null rank and is independent of the functions n and OIi I 
and their partial derivatives, we arrive at the classical definition /3/ of a scalar differ- 
ential invariant of the manifold Ir, (Gaussian invariant). If the invariant has null rank, and 
is independent of the components Wj and their partial derivatives, it is called /3/the 
scalar differential parameter of the function a (Beltrami invariant). 

3O. All possible covariant derivatives of order r 'qap,,,ra of the function D obviously 
form the invariant of the Lagrangian 

4O. 
(1.1) of arbitrary rank r. 

If n = 3 and h(h,,h,,h,) is a differentiable vector function over the manifold X,,then, 
as is well known /3,5/, the quantities 

I 
p’: 7 (a& - aAh,), cl! = det I/ Lli) I/ 

in an arbitrary coordinate system i$,q2,q3) define the contravariant components of the pseudo- 
vector, denoted rot h. If s@1det;/aiQJi1= 1 is restricted to the transformation (1.2), o= rotb 
will be the vector invariant of the Lagrangian (1.1). 

5o. By definition, it follows that if there exists Z..Sk Sn functionally andmutuallyin- 
dependent scalar invariants of Lagrangian (1.1) (if k =I, the invariant may notbe aconstant), 
than for any selection of the local coordinates and function 'P, the Lagrangian (1.3) cannot 
have more than n-k ignorable coordinates. 

Further, we set n = 3. Let daf 0 at the point p_ Then there exists a neighborhood 
U in which the solution of the equation a = a(x) for every point XEU is a two-dimensional 
submanifold. In other words, for all values of the constant c in some interval Z C R, the 
equation a=c defines a single-parameter family of surfaces : {a =c) in u, such that one 
and only one surface of the family passes through every point XE u. If the vector invariant 
y of the Lagrangian satisfies the condition y x grada+O, in u, the field 

y_ y.erad a -ggrada 
&,a 

is a nonzero invariant and its unit vector 

where T, (a = c) is a tangent space at the point I on the surface a = c. The invariant f$ = 
(Ala)-": e, X grad a is said to be complementary to e,. and also satisfies the inclusion relation 
(1.6). 

Fields of identity vectors tangent to the lines of curvature of surfaces of the family 
(a = c} are nontrivial examples of the invariants e, and ez . 

Let us prove this assertion in the particular caseinwhich the surfaces in the family 
(a=~) are geodetically parallel (this is the only case which will be necessary below). A 
functional relation between the invariants A,a and a may be used /5/ as an analytic criterion 
of such a (relative position of the surfaces. Without loss of generality, we may assume that 
A,a = 1. If the surfaces are geodetically parallel, the components z1,z2,z3 of the vector ek 
yield an extremal value for the form E ='/~Vijaz'zJ at every fixed point ZE U under the condi- 
tions Vi& = 0 and a& = 1 /6/. We generate the auxiliary function 

n = E + ‘/: h (a& - 1) + ).LV& 

and then write down the necessary extremum conditions 

(ha,j + V,ja)zj + pv, a = 0 (i = 1, 2, 3) 

If zl,zz,z3 is a solution of the problem, we will have 

p = - (Vijd& i_hVj,l) zj =_(+~+h)vjaL 0 

Consequently, the factor h must be a root of the equation 

6-'det fI5aij + V,ja 11 = h3 + HA* + K,,l A. + 13~’ det ij V,ja jl = 0 (1.7) 

H = .$a, K,,, = 11) ,ij:~e~mua,,VjmaVi;oa 

Here, &k = 116 (&k = -l/S), if the sequence i,;, k is obtained by even (odd) permutationof 
the indices 1.2, 3;e"" =O otherwise. The quantities H(z) and Kre.(z) are the values at SEU 
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corresponding to the mean and relative curvature /3/ of the surface a=a(z). All the roots of 
equation (1.7) are real. One of the roots is zero. Thus, we have verified quite simply that 
by selecting a semigeodetic coordinate system v',vB,~~=~~,in which the linear element of the 
manifold V, is written in the form /3/ 

ac' = b,gduadu~+ (da)’ (a, fi = 1, 2) (1.8) 

while the matrix of the second covariant derivatives of a has the form 

I 

'I@$,,. 'l$J+z, 0 
Vij'= 'l,',41, 'lrdnbnr 0 

0, 0, 0 H 

If the other roots b,#&, we may associate with each 
solution ek(zl,G,s3) of the equations 

root &(k= 1.2) obviously a unique 

@*ait + Vija) zj = 0, Via.@ = 0, aip'zj = 1 (i = i, 2, 3) (1.9) 

and ele, = 0. Thus, the quantities pi are expressed functionally in terms of the components 
aij,Viju,Via. Equations (1.9) are obtained in an arbitrary local coordinate system (ql,q*,$), so 

that e1 and e, in fact are invariants of the Lagrangian (l.l), Q.E.D. 

2. If the function a(z) is not constant, the system may have 2,1, or no single ignorable 
coordinate. Let us analyze these case in turn. 

Theorem 2. 1) Let that the function ~c!Z Ca is defined in a neighborhood U3 p and 
does not have any critical points 

el E,il,,UV T,(f=c) 

is a doubly continuously differentiable unit vector of some field, and e2 is the unit vector 
of the complementary field. If the expressions 

a, Af, nap = earot eg, oea (a, p = 1, 2) (2.1) 

are functions only of f and, in addition, 

o.gradf = 0 (2.2) 

then in a sufficiently small neighborhood of the point pi X,, it is possible to select gen- 
eralized coordinates of the system, two of which are ignorable. 

2) if there exist two ignorable coordinates in the system simultaneously and if fissome 
nontrivial scalar Lagrangian invariant , any other scalar invariant is a function only of f, 
and condition (2.2) is satisfied. 

Proof. The second assertion follows obviously from the definition in Sect.1. In the 
coordinate system {Q',Q', Q3}, h w ere Q1,Q2 are ignorable coordinates of the Lagrangian (1_3),the 
vector Sz = o has by (1.5) the components 

0' = - &AJA, Qa = &AI/A, ‘d3 = 0 
(A* = det I( A,, )I, grad A = (0, 0, &A)) 

Since f = f (Q3), the condition (2.2) is satisfied. 
Let us now prove the first assertion of the theorem. We consider the equations 

dq"1d.s = a’ja,f (i = 1, 2, 3) (2.3) 

of the normal congruence of the family {f = c}. To define an individual curve in the congru- 
ence, we need only specify the coordinates of the intersection point of this curve and some 
fixed surface in the family. Let us select the surface f =f(p) and define the coordinate 
system {$, v"} with coordinate vectors e,, e2 on it. In a sufficiently small neighborhood uof 
the point pE XS, the general solution of equations (2.3) may be represented in the form 

rJ1 (n', q2, 9") = y', vl (!?, 92, $) = ys 

where Y' and up are regular functions. Obviously, the functions u', v2, v3 = f are independent 
in Uand may be selected as the new coordinates of the system. In these coordinates,thelin- 
ear element 

Since b,, = l/(AJ) is a function only of f, without loss of generality we may assume that 
the linear element is written in the form (1.8). 
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Let us prove that the coefficients bl,, bl, and b,, do not contain u1 and u'. By condition, 
we have 

baf&pIR = ehL, P&LL_ 2 z nk,6 (a, p, h, 1 -= 1.2) (2.4) 

where 11 ba8 II = I( ba8 lrl (w &I, wh2~ 0) are the covariant components of the vector eh in the semigeodetic 
coordinate system {&, vz, f}, e,, = e,, _ 1, cl2 = spl _ 0, P = ez2 = 0, es1 = - @ = 1. 62 = b,,b,, - (b&. Since 
Wll%Z -IU,,U,,+O, we find from equations (2.4) that 

/I bn = '%.z2 + %P(. bl, = mumlz + ~2~21, b,, = wli + (~~1~ (2.5) 

aw,Jai = e%LhwBa (h, a _ 1,~) (2.6) 

Thus, the components of the vectors ~1 and e, satisfy equations (2.6) and the further con- 
dition 

w,, = 1, w 12 = 0, %I= 0, lupz = 1 if f = i(p) (2.7) 

But, by the existence and uniqueness theorem for differential equations, the solution of 
the system (2.6) under the initial condition (2.7) is a function only of f. Consequently, 
the coefficients (2.5) are independent of the coordinates LJ,a?. Q.E.D. 

As a corollary, we find that 

grad!. rot em = 0 (h = 1, 2) (2.8) 

These relations have a simple geometric meaning. If r is some smooth curve in a two-dim- 
ensional Riemannian manifold and if 'c (r,, TV) is the unit vector of its tangent, the pseudo- 
scalar rot r = (a,r2-&~,)/6will equal the geodetic curvature of the curve /9/. An arbitrary 
surface f=c defines the Riemannian submanifold Vz = (5~ U: f (5) = c, d.9 = b,&f%iu~; a, p = 1, 2). 

The relations (2.8) state that smooth curves on the surface f = c, which at every one of 
its points are tangent to one of the vectors e, or eZ, are geodetic lines of the submanifold 

vz. 
The ignorable coordinates of the metric ds2 = aijdqidqj may be found in the following way. 

We consider the relation 

v (per + ez) = grad Q W, pa, q3) (2.9) 

The left side of this equality is a gradient if and only if /lo/ (peI+ %)rot (p$ + e2) = 0, 
i.e., 

WV + P%l + IL (%I + %z) f % = 0 (2.10) 

The coefficients of the resulting equation depend only on f, so that it may be consid- 
ered as an ordinary Riccati-type differential equation, with pthe unknown function and f the 
independent variable. 

Let pl(f)# pL2(f) are any two particular solutions of equation (2.10). With every solu- 
tion pb(k=1,2), we associate some function vk(ql, q2,q3)f0, such that the curl of the left side 
of (2.9) is equal zero. Multiplying it as a scalar by the noncoplanar vectors Phe, -j- e2. e,, and 
gradf,we obtain equation (2.10) and, in light of (2.8), the equation 

av,iaf -vk (pkn,, + nd = 0, grad vk.grad f X (w, + ed = 0 

respectively. Consequently V~ = vh.(f). The independent functions Qk (k = 1, 2) obtained by 

squaring equation (2.9) under the condition p = pk, v = vk 
coordinates of the system. In these coordinates 

ds2 = A,, (dQ1)* + 2A&Q'dQ2 + Azz (dQ2)* + 

and Q" = f, may be taken as the new 

VQ3)" 

Thus, the coefficients of the homogeneous quadratic part of the Lagrangian (1.1) related 
to the coordinates Ql,QZ, and Q", are independent of Q'and Q". 

By condition , we have for the linear part of the Lagrangian (1.1) aiq” = BiQ” 

%=aB, 
8Q" aQ' ’ +=-$++R(Q3)A, $$=$$+W(Q3)A 

(R = v20 (p2e, + e,), W = vlo (w, + 4, A2 = det II Ail II) 

(2.11) 
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These relations, understood as equations in B1,Bz and B,, admit of a partial solutionof 
the form -4, = AI (Q3) (i = 1, 2, 3). C onsequently Bi = Ai + 6’i@ (Q’, Q”, Q”) (i e l,Z, 3). We set Y = -@,, 
thereby obtaining the Lagrangian (1.3) in which all the coefficients are functions of the 
single coordinate Q". The theorem is proved. 

Remark 6'. The conditions of the theorem help in discovering the presenceoftwoimplicit 
ignorable coordinates in the system or to prove that such coordinates do not exist. For 
example, suppose that da@)fO. Then in some neighborhood USP, we may set f =a. In a non- 
invertible system, it is convenient to set 

el = 0 (aijo"oj)-'l, 

whenever condition (2.2) is satisified (otherwise, by the second assertion ofthetheorem, the 
system will not have two ignorable coordinates). 

If Ha -4& #0 at the point p E X2, in some neighborhood U of p we may take as the 
invariants) the unit tangent vectors to the lines of curvature of surfaces in the 

f&iT"y" ('":'I a c. 
7O. Suppose that the conditions of Theorem 2 do not hold. That is, the expressions (2.1) 

and P = o.gradf are functions of the single variable f, but P#O. Then the Lagrangian system 
reduces to a form with a single ignorable coordinate. In fact, reasoning in the same way as 
in the proof of the first assertion of the theorem, we find, not (2.11), but the system of 
equations 

R(Q’)A, 
a4 
aqs= ++ W (Qs)A 

These equations are compatible only if PAzconst,and admit of the particular solution 

A,=QZPA+SRAdQ? Az=$WAdQ? As=0 

Consequently &=A~ +&@(Ql,Q*,Q* (i=1,2,3)). Setting Y= -CD, we obtain the Lagrangian (1.3) 
whose coefficients are independent of Q1. 

In light of remark 6', the following assertion is of interest. 

Theorem 3. Let a natural system is invertible and that in some neighborhood U3P, 
we have df + 0 (HP - 4Kre1) (f) = 0. Then: 

1) In order that two ignorable coordinates exist in the system simultaneously, it is 
sufficient, first, that the expressions 

a, Af, Azf (2.12) 

be functions of f and, second, that the absolute curvature Kabs of the surface f =f(p)vanish, 
i.e., 

[ 
i 

- e’“e’“‘aifa,fVj,fVk,r] liznP, =O 2 (AI!)’ 
(2.13) 

2) If f(z)is a scalar invariant of the system, both conditions are necessary for the ex- 
istence of two ignorable coordinates. 

Proof. Necessity. The necessity of the first condition is self-evident. Since the 
metric of the submanifold V, = (zE u: f(z) = f(p); dsa It_&is Euclidean, the absolute (Gaussian) 
curvature of the surface f =f(p) is zero. Note that the expression in square brackets in 
(2.13) for &bs follows from the Mashke formula /ll/. 

Sufficiency. In the semigeodetic coordinates vr, ve,fthe linear element of the manifold 
V, is written in the form (1.8) (under the condition A,f = 1). Here v1 = y', v2 = $are the gen- 

eral integrals of the equations (2.31, and ?I,$ are the local coordinates on the surface f = 
f@). By condition (2.131, the coordinate system (~1, 7") may be selected as Cartesian,in which 
case 

blI=l,bl~=O,b~==l if f=f@) (2.14) 

The condition (He - 4Kre1) 1~ = 0 states that at every point ZE U , the principal curvatures 
of the surface f = f(z) coincide , i.e., I is the umbilical point of the surface f = f (2). BY 
definition /3/, at an umbilical point the coefficients of the first and second principal quad- 
ratic forms of a surface are proportional: 

&lb,, = %J& = %Jbzz 

In the semigeodetic coordinates vl,ve, f we have /3/ 

(2.15) 
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(2.16 

We find from equations (2.15) and (2.16) that 

abdaf = bagAzf (a, p = 1, 2) (2.17) 

Thus, the coefficients b,p satisfy the system (2.17) and the initial condition (2.14). 
Consequently 

The theorem is proved. 

Remark 8'. If the natural system is invertible, and if f(s) is some function, suchthat 
df#o and (HE-4K,,,)(f)=O in the neighborhood u 3 P, the differential parameters Alf, Aaf, Kabs 
are functions of f, but &,sjfz5(pj #O, then the Lagrangian of the system reduces to a form 
with a single ignorable coordinate. 

In fact, in this case the absolute curvature of the surface f =f(p) is constant, there- 
fore /3,4/ there exist coordinates y',ya, in which 

ds21f=, (Pj = G (P) M") + @?)a 

The solution of equations (2.17) with initial condition bll= G (p), blP = 0, b,, = 1 has the form 
baB -= baB (y”, f) = baB (u2, f), in the case f = f (p) , i.e. , LJ is anignorable coordinate. 

3. I n view of Remarks 7O and 8 
0 

, we may consider the case in which there are two funct- 
ionally independent invariants in the set of invariants (2.1) (f, o.grad f) or (2.12) ( f,Ka ). 

Theorem 4. 1) Suppose that are given certain functions 'pl and cpz defined on the set 
U and that their differentials are independent at every point. If the expressions 

&rp,, V(cp,, cp~), grad (pa.rotz, ~.rot 't (3.1) 

o.grad (pa, 07 (V(cp,, Q) = a"ai(Plaj(Pz, T = grad 'pl X grad cpz; a = 1,2) (3.2) 

and a are functions only of 'pl and cpz, in a neighborhood U3p it is possible to select co- 
ordinates of the system one of which will be an ignorable coordinate. 

2) If there exists at most a single ignorable coordinate in the system, any pair of 
functionally and mutually independent scalar invariants 'pl and cpz of the Lagrangian (1.1) will 
satisfy condition 1. 

Proof. Necessity. From the definition in Sect.1, it follows that any scalar invar- 
iant of the Lagrangian (1.1) is a function of positional coordinates. Therefore, the condi- 
tions of the theorem must be satisfied, since the invariants 'pl and 'pz are independent. 

Sufficiency. Let us prove that there exists functions f(ol, (pz)# 0 and h ((PI, CPZ)? 
such that 

J-f = grad Q W, $, 9”) (3.3) 

(h = hx + T, x = eapV(cpl, 9~). grad (Pa; a, B = 1, 2) 

In place of the coordinates ql, q2 and q3, we take the coordinates $, 'pl, cpz,where 11, (q', q2, 
,$) satisfies in Uthe condition 

The left side of (3.3) is a gradient if and only if /lo/ broth = 0, i.e., 

ST. (grad+ x x)+heagV(cpl,~B)gradcp,.rotz + 

-$ IhV(cpl,cp,)l(A1~~A1~l- [V(cpI,cp2)la) f ~*rot~=O, (a,P, i = I,21 
I 

Since the expressions (3.1) are functions of 'pl and (~2, the resulting equation admits of 
a solution of the form h = h(cp,, cpz). With this solution we may associate the function f (%1 

qb$)# 0, such that the curl of the left side of (3.3) is zero: 

grad f X h + froth = 0 (3.4) 
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Here 

Equality (3.3) defines some function Qfor the given functions hand f. Further, we 
assume that '# = 0. 

The linear element of the manifold V, referred to the coordinates Q' = $, Q” = cpl, Q” = ‘pz, 
is given by 

ds' = At&id@, 11 Aij (1 = 1) A” 11 -’ (3.5) 

A” = f” (h%cp, + 1) (bJ,cpz - IV(cp,, cpz)12)> A'2 = I) 

A" = fh (&‘PI&R - [V(a cpz)l”), Ax2 = AI’P~, Aa3 = v&t, cpz), As3 = &p2 

Consequently, the determinant of the quadratic form (3.5) is expressed thus A2 = M (cpr, 
cp2) f-=. 

The vector equation (3.4) is written in an equivalent form if it is multipliedas ascalar 
by given noncoplanar vectors grad (pl, grad 'ps, and h. We obtain a system of two equations, 
and the thirdequationis satisfied identically by virtue of our choice of h. This system 

is compatible and, obviously, admits of a nonzero solution of the form f (cpu cpz) - Q.E.D. 
Let us consider the components of the vector o = rotb in the coordinate system IQ’, Q2, 

Q”): 

From (3.6), we find that 

a/&pi (Ao.grad ~1) = 0 (i = 1, 2) (3.7) 

Since the functions (3.2) depend only on 'pr and cpr and since condition (3.7) is satisfied, 
the equality (3.6), understood as a system of eqations in B,, B2 and B3, obviously admits 
of a particular solution of the form Ai = Ai (Q”, Q3) (i = 1, 2, 3). Consequently Bi = Ai + ai@ 

(Q’, Q2, Q3) (i = 1, 2, 3) . Setting Y = -CD,, we obtain the Lagrangian (1) with cyclic coordin- 
ate Q'. The theorem is proved. 

4. If a conservative natural system possesses the invariant u(Q', $, @), such that the 
condition du# 0 in a sufficiently small neighborhood Usp, the preceding results allow us 
to construct a solution for the existence problem of implicit ignorable coordinates of the 
system in U. The function v = a is the simplest scalar invariant of the Lagrangian (1.1). 
Since the function a is continuously differentiable, such a neighborhood exists whenever 

da (P) # 0. 
If p is a critical point of the function a, two cases are possible, depending upon 

whether the following condition is or is not satisfied. There exists a neighborhood U, in 
which a (V)# const for any open subset vc u. 

The first case does not present any difficulty. Note an assertion valid for arbitrary 
n > 2: if the solution of the equation a = a (p)is not a submanifold in U, in no neighbor- 

hood of p may we introduce a coordinate system with (n- l)-ignorable coordinates (otherwise 
the equation a = a(p) would define a coordinate surface, i.e., a submanifold in U). 

In the second case, we may use our results if instead of a, we find some other scalar 
invariant fi of the Lagrangian (l.l), such that db @)#O. Then in the statement of the first 
assertion of Theorem 2, we must set f = p. The scalar invariance of the vector field III = rotb 
and the Gaussian invariants of the manifold V, are the scalar invariants of the Lagrangian 
(1.1). It is useful to bear in mind that an explicit form of the second- and third-order 
Gaussian invariants have been presented /12,13/ for a differential quadratic form with three 
independent variables. 

The second case occurs whenever the Lagrangian 

L = l/2 aljq+q+ + aiqf (4.1) 

In a system with the Lagrangian (4.11, all three coordinates may be ignorable. The 
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existence criterion for a Euclidean metric /3/ implies the following assertion. 

Theorem 5. Three ignorable coordinates can exist simultaneously in a system with the 

Lagrangian (4.1) if and only if o = 0 and if the six essential components of the curvature 

tensor of the manifold V, are zero. 

5. The problem of determining the ignorable coordinates of a conservative naturalsystem 

is also equivalent to the problem of determining certain particular intervals of the system. 

Let us consider a natural family of trajectories of the system /14/, i.e. at"--1 family of 

solutions of the Lagrange equations corresponding to a single general value of the constant h 
of the energy integral. The integral 

fi ($3. . *3 q”, h) q”+ f (q’,. * .( qn, h) = const (5.1) 

of this family is called /2/ the conditional linear integral of the Lagrange equations, and 
its coefficients may contain h as a parameter. In addition to this system, which has the 

Lagrangian (l.l), we introduce an auxiliary system with configuration manifold X,* = {ZE X,: 
h + a>O} and Lagrangian 

L* = '/2 (h + a) aij $$ g + ai $ (5.2) 

where h is a parameter and 7 is an independent variable. 

The following assertion is true: 

Theorem 6. If relation (5.1) expresses the conditional integral of a given system cor- 

responding to the value h of the constant of the energy integral, the relation 

dqi 
(h+a)fix+f=cOnSt (5.3) 

is a general integral of the auxiliary system. 

Proof. We set dr = (h + a) dt, expression (5.1) turns into (5.3), and the Lagrange equa- 

tions of the system assume the form 

$5 - 5 + (+ aikq”q’;’ - &) 2$ =o, (j = 1, , “), (q’ = gj 

Consequently, the natural family of trajectories with constant his a family of integral 

curves of the equations 

d aL* 
277 -%=O (j=l,...,n) 

‘I, th T a) aikq p - 
i, k, _ 1 

We differentiate the integral (5.3) with respect to t by virtue of equations (5.4), ob- 

taining 

'/, (Viqk + vkqi) ‘J”$’ + [akjl t ‘I’ (V,U~ - Vkai)]nk' = 0 (5.6) 

where ni -z(IZ+U)fj (i=l, . ..( n), and n = f are the covariant derivatives computed relative to 

the metric of the Riemannian manifold v,, * = (X,*, d12 = (h + a) aljdq’dq’). Equality (5.6) must be 

satisfied for all possible values of @',..., @that satisfy the relation (5.5). If (II', . . . . @ 

is such a set of values, the quantities --Q*‘,. ., -q*’ also satisfy (5.5). Therefore the quad- 

ratic and linear parts of (5.6) must separately vanish. Hence, using well-known lines of 

reasoning we find that 

But these equalities follow from (5.6) whenever the quantities q? are not related by any 

formulas. The theorem is proved. 

Remark 9'. As a corollary, we may derive that if a system with the Lagrangian (1.1) has 

a conditional linear integral corresponding to some value of the energy constant h, there 

exists a transformation of coordinates and function 'P(+,.. . q^), such that the transformed 

Lagrangian L* +Y' has at least one ignorable coordinate. In the case of systems with two 
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degrees of freedom, this assertion was first proved by G.D. Birkhoff /2,15/ by means of iso- 
thermal coordinates, and the necessary and sufficient existence conditions for a conditional 
linear integral obtained in /16/. The remarks in Sect.4 must be used to obtain analogous con- 
ditions for systems with three degrees of freedom. 
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